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We consider branching polymers on the planar square lattice with open boundary conditions and exactly
calculate correlation functions ofk polymer chains that connect two lattice sites with a large distancer apart for
odd number of polymer chainsk. We find that besides the standard power-law factor the leading term also has
a logarithmic multiplier.
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Exact solutions of lattice statistical mechanical models,
e.g., the two-dimensional Ising model, the Baxter model,
etc., have played crucial role in our understanding of critical
systemsf1g. However, only a few lattice models can be
solved exactly. Here we calculate exactly correlation func-
tions for branching polymers on the planar square lattices
whenk polymer chains with oddk connect two lattice sites at
a large distancer apart. We find that besides the standard
power-law factor the leading term also has a logarithmic
multiplier. Our work could inspire further studies on lattice
models and logarithmic conformal field theoriessCFTd f2g.

The problem of branching polymers or spanning trees on
the lattice is well known in statistical physics. In 1847,
Kirchhoff f3g showed that the problem of spanning trees is
related to the problem of resistance between the nodes of an
electric circuit. Kirchhoff also proved a beautiful theorem
that the number of spanning treessbranching or dense poly-
mersd on the lattice ofN sites is given by the principal mi-
nors of theN3N matrix of discrete Laplacianf4g. Later on it
had been realized that the statistics of polymers is closely
related to the statistics of spin models. Fortuin and Kasteleyn
noticed that the partition functionZN of the q-state Potts
model can be represented as a dichromatic polynomial that
continuously depends onq. Although the partition function
of the model vanishes in the formal limitq→0 owing to zero
mode of the discrete Laplaciansit is a polynomial inq with
no zeroth power termd, its derivative with respect toq does
not and gives the partition function of dense lattice polymers
sspanning treesd f5,6g; de Gennesf7g explained how the par-
tition function of dilute polymers can be obtained from the
partition function of theOsnd model in the formal limitn
→0. The nature of the phase transition from the high-
temperaturesdiluted phase to the low-temperaturesdensed
phase has been the subject of many investigationsf8g. Nien-
huis f9g showed how a particularOsnd model on the hexago-
nal lattice can be mapped onto a Coulomb gas; the critical
properties can be deduced from this mapping and the expo-
nents obtained in this way are in good agreement with nu-
merical estimates. Recently the model of branching polymers
has found an alternate application for the sandpile model of
self-organized criticalityf10g.

In spite of its long history the model of branching poly-
mers has many open questions. One of them is about loga-
rithmic corrections to the correlation functions in this model
of the type shown in Fig. 1. Applying the Coulomb gas tech-
nique to theq-state Potts model, Saleur and Duplantierf11g
found that asymptote of the correlation functionsswhich in
their terminology can be considered as correlation function
of two “k-leg operators” inserted into the plane and a dis-
tancer apartd has a power-law decayr−hk with critical expo-
nentshk=gk2/4−s4−gd2/4g, whereg is related toq as: q
=2+2 cosspg/2d for gP f2,4g, andk is the number of poly-
mers in a bunchsin Fig. 1, k is 3d. In the limit q→0 sthis
corresponds to the phase when polymers cover the whole
lattice denselyd we haveg→2 andhk=sk2−1d /2. Later, by
studying the corresponding nonunitary CFT with the central
chargec=−2, Gurarief12g noticed that this theory admits the
possibility of logarithmic corrections to the correlation func-
tions, thus initiating the trend called logarithmic conformal
field theoriesf2g. However, the structure and the properties
of these theories are still rather poorly understood.

In this paper we consider branching polymers on the pla-
nar square lattice with open boundary conditions and calcu-
late exactlyk-leg correlation functions for odd number of
legsk. We find that besides the critical exponent predicted by
Saleur and Duplantier the leading term of the correlation
function also has a logarithmic multiplier. We hope that this
exact result could help to clarify the structure of nonunitary
CFT with c=−2.

*Electronic address: huck@phys.sinica.edu.tw
FIG. 1. Configuration of spanning tree on a planar square lattice

that corresponds to the three-chain correlation between sitesi and j .
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q-state Potts model. Here we briefly discussq→0 limit in
theq-state Potts model on latticeG with N sites andE bonds,
whose Hamiltonian can be written asH=Joki,jlf1
−dssi ,s jdg, where summation runs over all bondski , jl of the
lattice G and si, s j are spin variables withq components
attached to the bondki , jl. Partition function of the model
can be represented asf5,13g

Zshaj,qd = o
hsj

exph− bHssdj = o
C#G

auCubE−uCuqgsCd. s1d

Herea=1−exps−bJd, b=1−a, summation runs over all sub-
graphsC of G, gsCd is the number of connected components
in C, and uCu is the total number of bonds inC. To consider
the limit q→0 in the partition function, we use the formal
variablesa=kS/ s1+kSd andb=1/s1+kSd with k=Îq, then
rewrite the partition function as

ZshSj,kd =
kN+1

s1 + kSdE o
C#G

SuCukvsCd+gsCd−1, s2d

wherevsCd is the total number of closed cycles in the sub-
graph C and Euler relationvsCd+N=gsCd+ uCu has been
used.

Now, let us rewrite the partition function as a series in
power ofk,

ZshSj,kd , o
vsCd+gsCd=1

C#E

SuCu + k o
vsCd+gsCd=2

C#E

SuCu + ¯ . s3d

The first one corresponds to subgraphC for which vsCd
+gsCd=1. This is possible only whenvsCd=0 andgsCd=1.
In other words, the first term in Eq.s3d corresponds to the
sum over all spanning trees on the lattice. In the second term,
summation is over all configurations for whichvsCd+gsCd
=2. Here we have two possibilities: eithervsCd=0, gsCd
=2 or vsCd=1, gsCd=1. The first one corresponds to two-
component spanning trees while the second to configurations
with only one cycle. It is interesting to note that both sets of
configurations are dual to each other in the thermodynamic
limit. In the limit q→0, only the first term survives. Thus we
say that the model of spanning trees corresponds to the limit
q→0 of the Potts model. The result, however, can be differ-
ent if we are interested in correlation functions. In this case it
is possible that the first term in the expansions3d is identi-
cally equal to zero and the nontrivial contribution comes
from some higher-order term of the series. As an example let
us consider an average of 1−dssi ,s jd in the Potts model,
which is equal to 1, if spinssi ands j are different, and 0, if
they coincide. In terms of a cluster model this combination
of spin variables is equivalent to the indicatorDi j that the
sitesi and j belong to different connected components. That
is why on the configurations that are represented by the only
connected componentsincluding spanning treesd this indica-
tor vanishes identically. However, it would be nonzero on the
set of two-component spanning trees. We conclude that al-
though the partition function of the zero-component Potts
model is equal to the number of spanning trees, to calculate
correlation functions we need to consider more general con-

figurations such as two-component spanning trees, etc. It is
this fact which is responsible for the appearance of logarith-
mic corrections to correlation functions.

Before we calculate the correlation function ofk polymer
chains, we need to formulate the Kirchhoff theorem and re-
mind the reader how to calculate local tree diagrams. To
formulate the Kirchhoff theorem, we now recall some defi-
nitions from the graph theory.sad A connected subgraph of a
graphL which contains all its sites and has no cycles is a
spanning tree. sbd A spanning tree with one sitesthe rootd
distinguished from all other sites by this very fact is called a
rootedspanning tree.scd Since the rooted spanning tree is a
connected graph, there is a path from every site of it to the
root. We mayorient this path so that all its bonds will have
arrows in the direction to the root. The tree property provides
the consistency of this procedure for all bonds of the tree.

Kirchhoff theorem. We ascribe the weightxij to any bond
of the graphL, whose adjacent sitesi and j are different
from the root; the weight 1 to those bonds which are incident
to the root. Then we define diagonal elements of the matrix
of discrete Laplacian as a sum of weights of all bonds which
are incident to the given site,Diisxd=onxin, wherei is differ-
ent from the root and the sum is over bonds which are inci-
dent to the sitei. Off-diagonal elements of the matrix of
discrete Laplacian are defined asDi jsxd=−xij if sites i and j
are adjacent and both are different from the root and zero
otherwise. Then, the determinant of this matrix is a generat-
ing function of the rooted spanning trees on this graph. In
particular, whenxij =1 for all i and j , this matrix coincides
with the discrete Laplacian and its determinant gives the total
number of rooted spanning treesf4g.

The Kirchhoff theorem provides an effective tool to study
tree diagrams. Here we breifly recall its principal ideas. Any
modification of the weights of a finite number of lattice
bonds is called a local defect of the lattice. For example,
deleting the bonds or inserting additional ones can be con-
sidered as proper local defect. The difference between a dis-
crete Laplacian of the new latticeD8 and that of the initial
oneD is referred to as the defect matrixd. Locality condition
implies simply that only a finite number of the rows and
columns of the defect matrixd have nonzero elements.

Another important concept is a local tree diagram. We
define it as a finite set of black and white arrows on the
lattice bonds. Any spanning tree passing through all black
arrows but not through the white ones is called compatible
with this diagram. Given a local tree diagram, the problem
we are interested in is to find the total number of compatible
spanning trees. To solve this problem, we have to construct a
matrix of the proper local defect by setting the weights of all
bonds with white arrows to zero; whereas those with black
arrows, toe. Then, according to the Kirchhoff theorem the
highest term of the polynomialD8sed is just the number we
are interested in. So the ratioN of the number of spanning
trees compatible with a given diagram and the number of all
trees on the latticeL is given by

Nsdd = lim
e→`

detD8

ek detD
= lim

e→`
dets1 + Gdd/ek, s4d
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wherek is the number of black arrows in the diagram,1 is
the unit matrix, andG=D−1 is the lattice Green’s function
which depends on the boundary-value problem for this La-
placian. For open boundary conditions at infinity the element
of the matrix of Green’s function between sitei and sitej has
integral representation,

Gsn,md − Gs0,0d =
1

8p
E

0

2p E
0

2p cosnb cosma − 1

2 − cosb − cosa
dadb.

s5d

Here the sitei is chosen to have coordinatess0,0d on the
planar square lattice, and sitej coordinatessn,md. The
asymptotic of the Green’s function at large separations de-
pends only on the distance between sitesi and j sr
=În2+m2@1d. The main term of the expansion is logarith-
mic,

Gsrd − Gs0d = −
1

2p
ln r −

g

2p
−

3 ln 2

4p
+ ¯ , s6d

whereg is theEuler constant.
Priezzhevf14g observed that the Kirchhoff theorem can

be generalized to count also some cyclic configurations by
changing off-diagonal elements of the matrixd while keep-
ing its diagonal elements unchanged. For example, let us
consider an arbitrary graph with matrixD and a set ofk
additional bondssi1, j1d , . . . ,sik, jkd not originally present in
the graph with weights −ei1j1

, . . . ,−eikjk
, respectively. We

may consider these as the only nonzero elements of the de-
fect matrix d. Then, the determinant of the new matrixD8
=D+d will generate not only spanning trees on the graph,
but also all possible cycles on the graph running through
these additional bonds. Each cycle being weighted with fac-
tor −1 and, hence, those configurations that have an even and
odd number of cycles will have opposite signs. This obser-
vation gives us the possibility to use determinant formula to
count also cyclic configurations.

Correlation matrix. Now we may calculate exactly the
correlation functions considered by Saleur and Duplantier
f11g. Namely, they were interested in the asymptotic behav-
ior of such a correlation function when two sites of the lattice
i and j at a distancer apart are connected byk polymer
chains, whenr →`.

Let us first consider the simplest case whenk=1. In this
case averaging over configurations that represent the first
term of the expansions3d leads to the following result: Since
all sites of the lattice are connected by the spanning tree the
average of this correlation function will be equal to 1 iden-
tically and does not depend on the distancer. This, of course,
is the trivial example. Configurations that correspond to the
second term produce a less trivial result. In this case a span-
ning tree may have two connected components and graphical
representation of the corresponding configuration that pro-
duce nonzero contribution to the correlation function is
shown in Fig. 2.

With the help of the generalized Kirchhoff theorem, we
may easily count all such configurations. To this end, we add
an additional bond to the lattice that connects the sitesi and
j and count only those configurations that have a cycle that

FIG. 2. One cycle configuration of spanning tree on a planar
square lattice with an additional bond that connect sitesi and j .

FIG. 3. Five cycles configurationsad and one cycle configura-
tion sbd of spanning tree on a planar square lattice with five addi-
tional bonds that connect sitesi1, . . . ,i5 and j1, . . . ,j5.
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pass through the bond. It is clear that these are exactly the
same configurations that contribute to the second term of the
expansions3d. Defect matrix in this case can be written as
sd1di j =−e and all other elements of the matrix are equal to
zero. From Eq.s4d, we obtain the ratio of the total number of
such configurations and the number of all trees on the lattice
swith a negative signd,

Nsd1d = Gij , ln r , s7d

i.e., averaging over two-component spanning trees results in
logarithmic corrections to the correlation function as is given
by asymptotic behavior of lattice Green’s functions6d.

Now let us consider a more general case of correlation
functions withk polymer chains and addk additional bonds
to the lattice and calculate the number of configurations with
cycles that pass through all these additional bonds. One can
verify that if the bonds are placed in a staircase manner as
shown in Fig. 3, due to geometrical restrictions there are
only two possibilities for the cycles to pass through the
bonds. Eitherk different cycles pass every one through its
own additional bond as shown in Fig. 3sad, or one cycle
passes through all thesek bonds as shown in Fig. 3sbd. The
former has a weights−1dk while the latters−1d. Hence, these
configurations will be counted with the same signs−1d only
whenk is odd. This is the crucial observation for our further
calculations.

In the limit of large separation of the sitesi and j cyclic
configurations will exactly correspond to those configura-
tions when sitesi and j are connected with a bunch made of
k polymer chains. The elements of the defect matrix can be
chosen assdkdi1j1

=¯ =sdkdikjk
=−e; all other matrix elements

are 0. Now calculating the determinants4d we obtain

Nsdkd = o
P

s− 1dssPdGi1jPs1d
Gi2jPs2d

¯ GikjPskd
, s8d

where summation is done over all permutationsP of the set
s j1, . . . ,j2k−1d and ssPd is equal to 1 if permutation is odd
and 0, otherwise.

To obtain more detailed information about the correlation
functions, we have to study their asymptotic behavior at
large separationsr @1. We may calculate such an asymptotic
as follows. First, lattice Green’s function depends only on the
distances between sitesi and j . If we denote coordinates of
the difference on the planar square lattice assn,md, from,
e.g., Fig. 3, we can write down explicit expressions for the
Green’s functions s5d as follows: Gi1j1

=Gsn,md, Gi1j2
=Gsn,m−1d, Gi1j3

=Gsn+1,m−1d, Gi1j4
=Gsn+1,m−2d , . . ..

Then we consider Taylor expansions of these formulas at
large separations whenn, m@1,

Gi1j2
= Gsn,m− 1d = Gsn,md − ]mGsn,md + . . . , s9d

and take into account logarithmic asymptotic behavior of the
lattice Green’s functions6d. We keep as many terms in this
expansion as necessary to get first nonzero contributions in
Eq. s8d to obtain the leading term of the asymptotic expan-
sion of the correlation functions

Nsdkd , r s1−k2d/2 ln r , s10d

wherek=1,3,5, . . . .
This is the main result of the paper which is obtained

analytically without any reference to the Coulomb gas tech-
nique or conformal field theory. It was essential for our cal-
culation that the number of polymer chains that connect two
sites of the lattice is odd. Unfortunately, the Kirchhoff theo-
rem is not applicable for the analysis of an even number of
chains since in this case different configurations are counted
with opposite signs. At this moment we do not see any way
around this problem. We believe this problem deserves fur-
ther investigation. Also, it would be of interest to analyze
higher-order terms of the expansion above as it may also
contain higher powers of logarithms.
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