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We consider branching polymers on the planar square lattice with open boundary conditions and exactly
calculate correlation functions &fpolymer chains that connect two lattice sites with a large distaapart for
odd number of polymer chairks We find that besides the standard power-law factor the leading term also has
a logarithmic multiplier.
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Exact solutions of lattice statistical mechanical models, In spite of its long history the model of branching poly-
e.g., the two-dimensional Ising model, the Baxter modelmers has many open questions. One of them is about loga-
etc., have played crucial role in our understanding of criticalrithmic corrections to the correlation functions in this model
systems[1]. However, only a few lattice models can be of the type shown in Fig. 1. Applying the Coulomb gas tech-
solved exactly. Here we calculate exactly correlation funcnique to theg-state Potts model, Saleur and Duplanfitt]
tions for branching polymers on the planar square latticegound that asymptote of the correlation functiamghich in
whenk polymer chains with odé connect two lattice sites at their terminology can be considered as correlation function
a large distance apart. We find that besides the standardyt tyo “k-leg operators” inserted into the plane and a dis-
powgr-llaw factor the Ieading term also has a logarith,mictancer apar) has a power-law decay "™ with critical expo-
multiplier. Our work could inspire further studies on lattice nentsh,=gk®/4—(4-g)?/4g, whereg is related toq as: q
models and logarithmic conformal field theorigaFT) [2]. =242 cogmg/2) | [2.4], andk is th ber of poly-

The problem of branching polymers or spanning trees on_ [Co%mg orgele,al, andkis the number of poly
the lattice is well known in statistical physics. In 1847, Mers in a bunchin Fig. 1,k is 3). In the limit —0 (this
Kirchhoff [3] showed that the problem of spanning trees iscO'reésponds to the phase when polyrgers cover the whole
related to the problem of resistance between the nodes of dattice denselywe haveg—2 andh,=(k°~1)/2. Later, by
electric circuit. Kirchhoff also proved a beautiful theorem Studying the corresponding nonunitary CFT with the central
that the number of spanning tre@sanching or dense poly- chargec=-2, Gurarig[12] noticed that this theory admits the
merg on the lattice ofN sites is given by the principal mi- possibility of logarithmic corrections to the correlation func-
nors of theN X N matrix of discrete Laplaciaf¥4]. Later onit  tions, thus initiating the trend called logarithmic conformal
had been realized that the statistics of polymers is closelfield theories[2]. However, the structure and the properties
related to the statistics of spin models. Fortuin and Kasteleyof these theories are still rather poorly understood.
noticed that the partition functioZy of the g-state Potts In this paper we consider branching polymers on the pla-
model can be represented as a dichromatic polynomial thatar square lattice with open boundary conditions and calcu-
continuously depends on. Although the partition function |ate exactlyk-leg correlation functions for odd number of
of the model vanishes in the formal limjt— 0 owing to zero  |egsk. We find that besides the critical exponent predicted by
mode of the discrete Laplacidit is a polynomial inq with  sajeur and Duplantier the leading term of the correlation
no zeroth power term its derivative with respect tq does  fnction also has a logarithmic multiplier. We hope that this

not and gives the partition function of dense lattice polymersyyact result could help to clarify the structure of nonunitary
(spanning treed5,6]; de Genne$7] explained how the par-  ~g1 with c=-2.

tition function of dilute polymers can be obtained from the
partition function of theO(n) model in the formal limitn

—0. The nature of the phase transition from the high- j j
temperature(dilute) phase to the low-temperaturfelense e — —T—
phase has been the subject of many investigafidhNien- —‘

nal lattice can be mapped onto a Coulomb gas; the critical
properties can be deduced from this mapping and the expo-
nents obtained in this way are in good agreement with nu-
merical estimates. Recently the model of branching polymers -
has found an alternate application for the sandpile model of l
self-organized criticalityf 10].

huis[9] showed how a particulad(n) model on the hexago- L

FIG. 1. Configuration of spanning tree on a planar square lattice
*Electronic address: huck@phys.sinica.edu.tw that corresponds to the three-chain correlation betweeni sited; .
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g-state Potts modeHere we briefly discusg— 0 limit in figurations such as two-component spanning trees, etc. It is
theg-state Potts model on lattic with N sites andz bonds,  this fact which is responsible for the appearance of logarith-
whose Hamiltonian can be written a#d=JZ;5[1  mic corrections to correlation functions.
— 8(0y, )], where summation runs over all bon(sj) of the Before we calculate the correlatiqn functionlopolymer
lattice G and o, o are spin variables witly components ~chains, we need to formulate the Kirchhoff theorem and re-
attached to the bond,j). Partition function of the model ™Mind the reader how to calculate local tree diagrams. To
can be represented §5,13] formulate the Kirchhoff theorem, we now recall some defi-
nitions from the graph theorya) A connected subgraph of a
Z({a},q) = >, expl- BH(0)} = > alClbEIClgn©® . (1)  graphL which contains all its sites and has no cycles is a
{o} CCG spanning tree(b) A spanning tree with one sitéhe root)
) distinguished from all other sites by this very fact is called a
Herea=1-exg-BJ), b=1-a, summation runs over all sub- 5104 spanning tree(c) Since the rooted spanning tree is a
graphsC of G, y(C) is the number of connected components connected graph, there is a path from every site of it to the
in C, and|C] is the total number of bonds i8. To consider oot. We mayorient this path so that all its bonds will have
the. limit g— 0 in the partition function, we use the formal grrows in the direction to the root. The tree property provides
variablesa=«S/(1+«S) andb=1/(1+«S) with k=g, then  the consistency of this procedure for all bonds of the tree.

rewrite the partition function as Kirchhoff theoremWe ascribe the weight; to any bond
N+1 of the graphZ, whose adjacent siteisand j are different
Z({S} k) = K—E > gllge@+AC-1 (2)  from the root; the weight 1 to those bonds which are incident
(1+k9"cce to the root. Then we define diagonal elements of the matrix

of discrete Laplacian as a sum of weights of all bonds which
are incident to the given sité; (x) == .X,, wherei is differ-
ent from the root and the sum is over bonds which are inci-

where w(C) is the total number of closed cycles in the sub-
graph C and Euler relationw(C)+N=1(C)+|C| has been

used. . . . .. dent to the sitei. Off-diagonal elements of the matrix of
Now, let us rewrite the partition function as a series in g rete Laplacian are defined Ag(x)=-x; if sitesi and]
power of«, are adjacent and both are different from the root and zero
Z4Sh k) ~ D 90+ « D gt ... 3) ptherwisg. Then, the determinant. of this matrix i_s a generat-
’ W(C)rC)=1 0(C)rAC)=2 ing function of the rooted spanning trees on this graph. In
cCE CCE particular, whenx;=1 for all i andj, this matrix coincides

with the discrete Laplacian and its determinant gives the total
The first one corresponds to subgra@hfor which w(C) number of rooted spanning trep.
+y(C)=1. This is possible only whea(C)=0 andy(C)=1. The Kirchhoff theorem provides an effective tool to study
In other words, the first term in E¢3) corresponds to the tree diagrams. Here we breifly recall its principal ideas. Any
sum over all spanning trees on the lattice. In the second ternmodification of the weights of a finite number of lattice
summation is over all configurations for whies(C)+ (C) bonds is called a local defect of the lattice. For example,
=2. Here we have two possibilities: eitheC)=0, y(C) deleting the bonds or inserting additional ones can be con-
=2 or w(C)=1, y(C)=1. The first one corresponds to two- sidered as proper local defect. The difference between a dis-
component spanning trees while the second to configuratiorgfete Laplacian of the new lattick’ and that of the initial
with only one cycle. It is interesting to note that both sets ofoneA is referred to as the defect matix Locality condition
configurations are dual to each other in the thermodynamignplies simply that only a finite number of the rows and
limit. In the limit q— 0, only the first term survives. Thus we columns of the defect matri® have nonzero elements.
say that the model of spanning trees corresponds to the limit Another important concept is a local tree diagram. We
g— 0 of the Potts model. The result, however, can be differdefine it as a finite set of black and white arrows on the
ent if we are interested in correlation functions. In this case ifattice bonds. Any spanning tree passing through all black
is possible that the first term in the expansi@ is identi-  arrows but not through the white ones is called compatible
cally equal to zero and the nontrivial contribution comeswith this diagram. Given a local tree diagram, the problem
from some higher-order term of the series. As an example leve are interested in is to find the total number of compatible
us consider an average of Bw;,0;) in the Potts model, spanning trees. To solve this problem, we have to construct a
which is equal to 1, if spins; ando; are different, and 0, if matrix of the proper local defect by setting the weights of all
they coincide. In terms of a cluster model this combinationbonds with white arrows to zero; whereas those with black
of spin variables is equivalent to the indicatty that the — arrows, toe. Then, according to the Kirchhoff theorem the
sitesi andj belong to different connected components. Thathighest term of the polynomial’(e) is just the number we
is why on the configurations that are represented by the onlgre interested in. So the ratig’ of the number of spanning
connected componefincluding spanning tre¢ghis indica-  trees compatible with a given diagram and the number of all
tor vanishes identically. However, it would be nonzero on thetrees on the lattic& is given by
set of two-component spanning trees. We conclude that al-
though the partition function of the zero-component Potts ,
model i_s equal to the number of span.ning trees, to calculate NS = lim ——— = lim de{(1 + GJ)/€, (4)
correlation functions we need to consider more general con- o €<dEtA o
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FIG. 2. One cycle configuration of spanning tree on a planar
square lattice with an additional bond that connect Sitasd j.

wherek is the number of black arrows in the diagrainis

the unit matrix, andG=A"! is the lattice Green’s function
which depends on the boundary-value problem for this La-
placian. For open boundary conditions at infinity the element ()
of the matrix of Green’s function between sitand sitej has

integral representation,

G(nm - G(0,0 = — J B f T cosnpoosmal, )
’ " 8w)y, Jo 2-cosB-cosa adp. A

(5 T
..Jz o 7,

Here the sitel is chosen to have coordinaté8,0) on the — | .4
planar square lattice, and site coordinates(n,m). The ‘.J"
asymptotic of the Green’s function at large separations de- : ‘ ‘ A
pends only on the distance between siiesand j (r
={n?+nm?>1). The main term of the expansion is logarith-
mic,

wherey is the Euler constant.

Priezzhev[14] observed that the Kirchhoff theorem can
be generalized to count also some cyclic configurations by
changing off-diagonal elements of the matéixwhile keep- FIG. 3. Five cycles configuratiote) and one cycle configura-

ing its diagonal elements unchanged. For example, let Ugon (b) of spanning tree on a planar square lattice with five addi-
consider an arbitrary graph with matrix and a set ofk  tional bonds that connect sitég ... ,is andjy, ... j

. ,]5.

additional bondgiy,j1),...,(ix,ji) not originally present in
the graph with weights ¢ ,...,—€ ;. respectively. We Let us first consider the simplest case whetil. In this
may consider these as the only nonzero elements of the dease averaging over configurations that represent the first
fect matrix 6. Then, the determinant of the new matX  term of the expansiofB) leads to the following result: Since
=A+ 6 will generate not only spanning trees on the graphall sites of the lattice are connected by the spanning tree the
but also all possible cycles on the graph running throughaverage of this correlation function will be equal to 1 iden-
these additional bonds. Each cycle being weighted with factically and does not depend on the distanc€his, of course,
tor —1 and, hence, those configurations that have an even aiiglthe trivial example. Configurations that correspond to the
odd number of cycles will have opposite signs. This obsersecond term produce a less trivial result. In this case a span-
vation gives us the possibility to use determinant formula toning tree may have two connected components and graphical
count also cyclic configurations. representation of the corresponding configuration that pro-

Correlation matrix Now we may calculate exactly the duce nonzero contribution to the correlation function is
correlation functions considered by Saleur and Duplantieshown in Fig. 2.
[11]. Namely, they were interested in the asymptotic behav- With the help of the generalized Kirchhoff theorem, we
ior of such a correlation function when two sites of the latticemay easily count all such configurations. To this end, we add
i andj at a distanca apart are connected by polymer  an additional bond to the lattice that connects the sitasd
chains, whemr — o, j and count only those configurations that have a cycle that
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pass through the bond. It is clear that these are exactly the To obtain more detailed information about the correlation
same configurations that contribute to the second term of thiunctions, we have to study their asymptotic behavior at
expansion(3). Defect matrix in this case can be written as large separations> 1. We may calculate such an asymptotic
(61);j=—€ and all other elements of the matrix are equal toas follows. First, lattice Green’s function depends only on the
zero. From Eq(4), we obtain the ratio of the total number of distances between sitésind j. If we denote coordinates of
such configurations and the number of all trees on the latticthe difference on the planar square lattice(agm), from,
(with a negative sign e.g., Fig. 3, we can write down explicit expressions for the
L Green's functions(5) as follows: G;; =G(n,m), G;;
M8 =G ~Inr, @) =G(n,m-1), Gilj3:G(n+1,m— 1), Gi1j4:lJGl(n+1,m—2),.l.J.2.

i.e., averaging over two-component spanning trees results ifhen we consider Taylor expansions of these formulas at
logarithmic corrections to the correlation function as is givenlarge separations whem m>1,
by asymptotic behavior of lattice Green's functi@).

yNo3//v Igt us consider a more general case of correlation Gij,=Gnm-1)=G(nm -4,Ghm+ ..., (9
functions withk polymer chains and addadditional bonds 5 take into account logarithmic asymptotic behavior of the
to the lattice and calculate the number.o.f configurations withattice Green's functior(6). We keep as many terms in this
cycles that pass through all these additional bonds. One caQy yansion as necessary to get first nonzero contributions in

verify that if the bonds are placed in a staircase manner agq (g) to obtain the leading term of the asymptotic expan-
shown in Fig. 3, due to geometrical restrictions there argnn of the correlation functions

only two possibilities for the cycles to pass through the
bonds. Eitherk different cycles pass every one through its N8 ~ r=2 | p, (10)
own additional bond as shown in Fig(aB, or one cycle
passes through all thegebonds as shown in Fig.(B). The
former has a weight-1)¥ while the latter(-1). Hence, these
configurations will be counted with the same sigii) only
whenk is odd. This is the crucial observation for our further
calculations.

In the limit of large separation of the sitésandj cyclic
configurations will exactly correspond to those configura-

iqia

wherek=1,3,5, ... .

This is the main result of the paper which is obtained
analytically without any reference to the Coulomb gas tech-
nique or conformal field theory. It was essential for our cal-
culation that the number of polymer chains that connect two
sites of the lattice is odd. Unfortunately, the Kirchhoff theo-
rem is not applicable for the analysis of an even number of

tions when sites andj are connected with a bunch made of chains since in this case different configurations are counted

k polymer chains. The elements of the defect matrix can b(‘-,‘v'th Opposite signs. At this moment we do not see any way
chosen a8, « =-++=(8), . =—e; all other matrix elements around this problem. We believe this problem deserves fur-
™ 7 o &

. . . ther investigation. Also, it would be of interest to analyze
are 0. Now calculating the determina@l) we obtain higher-order terms of the expansion above as it may also
M3)=2 (-)7PG
P

G (8) contain higher powers of logarithms.
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